10 research outputs found

    Tracking Human Behavioural Consistency by Analysing Periodicity of Household Water Consumption

    Get PDF
    People are living longer than ever due to advances in healthcare, and this has prompted many healthcare providers to look towards remote patient care as a means to meet the needs of the future. It is now a priority to enable people to reside in their own homes rather than in overburdened facilities whenever possible. The increasing maturity of IoT technologies and the falling costs of connected sensors has made the deployment of remote healthcare at scale an increasingly attractive prospect. In this work we demonstrate that we can measure the consistency and regularity of the behaviour of a household using sensor readings generated from interaction with the home environment. We show that we can track changes in this behaviour regularity longitudinally and detect changes that may be related to significant life events or trends that may be medically significant. We achieve this using periodicity analysis on water usage readings sampled from the main household water meter every 15 minutes for over 8 months. We utilise an IoT Application Enablement Platform in conjunction with low cost LoRa-enabled sensors and a Low Power Wide Area Network in order to validate a data collection methodology that could be deployed at large scale in future. We envision the statistical methods described here being applied to data streams from the homes of elderly and at-risk groups, both as a means of early illness detection and for monitoring the well-being of those with known illnesses.Comment: 2019 2nd International Conference on Sensors, Signal and Image Processin

    Gold nanowire electrodes in array: Simulation study and experiments

    Get PDF
    Recent developments in nanofabrication have enabled fabrication of robust and reproducible nanoelectrodes with enhanced performance, when compared to microelectrodes. A hybrid electron beam/photolithography technique is shown that permits gold nanowire array electrodes to be routinely fabricated at reasonable cost. Fabricated devices include twelve gold nanowire working electrode arrays, an on-chip gold counter electrode and an on-chip platinum pseudo reference electrode. Using potential sweep techniques, these nanowires exhibit measurable currents in the nanoAmpere regime and display steady-state voltammograms even at very high scan rates (5000 mV.s-1) indicative of fast analyte mass transport to the electrode. Nanowire electrode arrays offer the potential for enhancements in electroanalysis including: increased signal to noise ratio and increased sensitivity while also allowing quantitative detection at much lower concentrations. However, to achieve this goal a full understanding of the diffusion profiles existing at nanowire arrays is required. To this end, we simulate the effects of altering inter-electrode separations on analyte diffusion for a range of scan rates at nanowire electrode arrays, and perform the corresponding experiments. We show that arrays with diffusionally independent concentration profiles demonstrate superior electrochemical performance compared to arrays with overlapping diffusion profiles when employing sweep voltammetric techniques. By contrast, we show that arrays with diffusionally overlapping profiles exhibit enhanced performance when employing step voltammetric techniques

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Benchmarking seasonal forecasting skill using river flow persistence in Irish catchments

    Get PDF
    This study assesses the seasonal forecast skill of river flow persistence in 46 catchments representing a range of hydrogeological conditions across Ireland. Skill is evaluated against a climatology benchmark forecast and by examining correlations between predicted and observed flow anomalies. Forecasts perform best when initialized in drier summer months, 87% of which show greater skill relative to the benchmark at a 1-month horizon. Such skill declines as forecast horizon increases due to the longer time a catchment has to “forget” initial anomalous flow conditions and/or to be impacted by “new” events. Skill is related to physical catchment descriptors such as the baseflow index (correlation ρ = 0.86) and is greatest in permeable high-storage catchments. The distinct seasonal and spatial variations in persistence skill allow us to pinpoint when and where this method can provide a useful benchmark in the future development of more complex seasonal hydrological forecasting approaches in Ireland

    Benchmarking seasonal forecasting skill using river flow persistence in Irish catchments

    No full text
    This study assesses the seasonal forecast skill of river flow persistence in 46 catchments representing a range of hydrogeological conditions across Ireland. Skill is evaluated against a climatology benchmark forecast and by examining correlations between predicted and observed flow anomalies. Forecasts perform best when initialised in drier summer months, 87% of which show greater skill relative to the benchmark at a 1-month horizon. Such skill declines as forecast horizon increases due to the longer time a catchment has to “forget” initial anomalous flow conditions and/or to be impacted by “new” events. Skill is related to physical catchment descriptors such as the Baseflow Index (correlation ρ= 0.86) and is greatest in permeable high-storage catchments. The distinct seasonal and spatial variations in persistence skill allows us to pinpoint when and where this method can provide a useful benchmark in the future development of more complex seasonal hydrological forecasting approaches in Ireland. </div

    Characterising the Extended Morphologies of BL Lacertae Objects at 144 MHz with LOFAR

    Get PDF
    International audienceWe present a morphological and spectral study of a sample of 99 BL Lac objects using the LOFAR Two-Metre Sky Survey Second Data Release (LDR2). Extended emission has been identified at gigahertz frequencies around BL Lac objects, but with LDR2 it is now possible to systematically study their morphologies at 144 MHz, where more diffuse emission is expected. LDR2 reveals the presence of extended radio structures around 66/99 of the BL Lac nuclei, with angular extents ranging up to 115″, corresponding to spatial extents of 410 kpc. The extended emission is likely to be both unbeamed diffuse emission and beamed emission associated with relativistic bulk motion in jets. The spatial extents and luminosities of the extended emission are consistent with the unification scheme for active galactic nuclei, where BL Lac objects correspond to low-excitation radio galaxies with the jet axis aligned along the line of sight. While extended emission is detected around the majority of BL Lac objects, the median 144–1400 MHz spectral index and core dominance at 144 MHz indicate that the core component contributes ∼42% on average to the total low-frequency flux density. A stronger correlation was found between the 144 MHz core flux density and the γ-ray photon flux (r = 0.69) than between the 144 MHz extended flux density and the γ-ray photon flux (r = 0.42). This suggests that the radio-to-γ-ray connection weakens at low radio frequencies because the population of particles that give rise to the γ-ray flux are distinct from the electrons producing the diffuse synchrotron emission associated with spatially extended features

    Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times

    No full text
    Skilful hydrological forecasts can benefit decision-making in water resources management and other water-related sectors that require long-term planning. In Ireland, no such service exists to deliver forecasts at the catchment scale. In order to understand the potential for hydrological forecasting in Ireland, we benchmark the skill of Ensemble Streamflow Prediction (ESP) for a diverse sample of 46 catchments using the GR4J hydrological model. Skill is evaluated within a 52-year hindcast study design over lead times of 1 day to 12 months for each of 12 initialisation months, January to December. Our results show that ESP is skilful against a probabilistic climatology benchmark in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. Mean ESP skill was found to decay rapidly as a function of lead time, with continuous ranked probability skill scores (CRPSS) of 0.8 (1 day), 0.32 (2-week), 0.18 (1-month), 0.05 (3-month), and 0.01 (12-month). Forecasts were generally more skilful when initialised in summer than other seasons. A strong correlation (ρ = 0.94) was observed between forecast skill and catchment storage capacity (baseflow index), with the most skilful regions, the Midlands and East, being those where slowly responding, high storage catchments are located. Forecast reliability and discrimination were also assessed with respect to low and high flow events. In addition to our benchmarking experiment, we conditioned ESP with the winter North Atlantic Oscillation (NAO) using adjusted hindcasts from the Met Office’s Global Seasonal Forecasting System version 5. We found gains in winter forecast skill (CRPSS) of 7–18% were possible over lead times of 1 to 3 months, and that improved reliability and discrimination make NAO-conditioned ESP particularly effective at forecasting dry winters, a critical season for water resources management. We conclude that ESP is skilful in a number of different contexts and thus should be operationalised in Ireland given its potential benefits for water managers and other stakeholders.</div

    Three Faces of Civilization: ‘In the Beginning All the World was Ireland’

    No full text
    corecore